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ABSTRACT 

Lattice fermions have well-known difficulties with chiral symmetry. 
To evade them it is possible to couple continuum fermions to lattice 
gauge fields, by introducing an interpolation of the latter. Following 
this line of thinking, this paper presents two Euclidean formulations of 
the effective action that appears after functional integration over fermion 
fields, one for vector-like and the other for chiral couplings. With suitable 
finite-mode regulators both effective actions can be evaluated in a finite 
computation. The prescriptions provided here contain some details not 
found in previous work marrying continuum fermions to the lattice via 
an interpolation. For example, the counter-terms needed to maintain 
chiral gauge invariance are explicitly given. By construction coupling- 
constant renormalization, anomaly structure, and (in the chiral gauge 
theory) fermion nonconserving amplitudes all satisfy one’s expectations 
from perturbative and semi-classical analyses. 
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1 Introduction 

A long-standing problem in quantum field theory is a nonperturbative formulation 
of chiral fermions. Our only general nonperturbative formulation of quantum field 
theory is the renormalization-group limit of functional integrals defined on a lattice. 
But when chiral symmetry is an issue, there are notorious problems [l, 21. Briefly, 
one must either sacrifice locality or pceitivity, tolerate additional states (doubling or 
mirror states), or break chiral symmetry explicitly. When the coupling of fermions to 
gauge fields is vector-like, the standard formulations [3,4] are adequate, if imperfect. 
On the other hand, when fermions couple to chiral gauge fields, it has been difficult to 
prove a conceptually clean theory; see ref. [5] for a review. An encouraging proposal 
replaces the functional integral over fermions with an auxiliary quantum-mechanical 
system [6], inspired by domain-wall [7] and lattice Pauli-Villars [8] methods. 

This paper offers constructions of vector-like and chiral gauge theories, coupling 
continuum fermions to lattice gauge fields by introducing an interpolation of the 
latter. Ideas of this type were first discussed by Flume and Wyler for the Schwinger 
model [9], and recently ‘t Hooft advocated a similar approach for four-dimensional 
gauge theories [lo]. The appeal stems from the nontrivial (instanton) topology 
of continuum gauge fields, because the Atiyah-Singer index theorem [ll] implies 
an intimate relation between chiraI properties of fermions and the topology of the 
gauge field. 

In 1987-1988 there was some discussion about topology and fermions in lattice 
gauge theory [12, 131. Except for a conference reports (141, however, none of the 
applications to chiral gauge theories have been published. Spurred by ref. [IO], 
I would like to present my variation on the theme. 

Ref. [lo] regulates the gauge field with the lattice and the fermions with a stan- 
dard Pauli-Villars scheme. The number of fermionic degrees of freedom (per unit 
volume) remains infinite-in the words of Smit, the method is desperate [13]. In 
particular, a numerical evaluation of the effective action would require infinite com- 
putation, even at fixed cutoff. This paper, on the other hand, examines a sharp 
cutoff on determinants, which was first studied in ref. [15]. The number of fermionic 
degrees of freedom is now finite, so the numerical computation of the effective action 
is finite too. 

Another difference between this paper’s proposal and the one in ref. [lo] is the 
strategy for removing the cutoffs. Let a denote the lattice spacing and M the 
ultraviolet cutoff on fermions. In the formulation of ref. [lo] one takes M + co for a 
fixed, and afterwards a + 0. As stressed in sect. 7.3 the cutoff in ref. [lo] maintains 
the gauge symmetry of the chiral theory only in the A4 + 00 limit. With the 
sharp cutoff formulated below, however, it is permissible and natural to take a -+ 0, 
M -+ 03 with Ma constant. The latter approach is far superior in a numerical 
computation. If M must vary at fixed a, it will be extremely difficult to generate 
useful ensembles of lattice gauge fields, because to obtain a renormalized theory the 
bare gauge coupling must depend on M. 

Sect. 2 begins with a discussion of vector-like theories. The analysis starts with 
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anomalies, because they are such a stumbling block for lattice formulations [l]. The 
functional integral over fermion fields is defined in the manner of Fujikawa [16], and a 
specific cutoff procedure is formulated and justified in sect. 3. These sections define 
an effective action for a continuous background gauge field. Sect. 4 summarizes the 
essential features of an interpolation from the lattice field of parallel transporters 
to a connection. Sect. 5 derives a heuristic relation between the fermion measure 
of this proposal and the usual measure of lattice fermions. While inessential to the 
main line of argument, the derivation suggests a rationale for relating the cutoff 
on determinants to the lattice spacing. Sect. 6 briefly considers numerical aspects. 
As usual, the generalization to chiral gauge theories is not immediate, but sect. 7 
produces a satisfactory definition of the chiral effective action, including fermion 
nonconservation. Finally, sect. 8 remarks on some of the loose ends, and compares 
the status of this formulation with ref. [6]. 

2 Vector-like gauge theory 

The formal expression for the Euclidean functional integral for fermions is 

e-W) = 
/ 

‘o@ e-Wshti)~ 
(2.1) 

Let us assume a background gauge potential (or connection) A,. In the application 
to lattice field theory, thii connection is a determined from the lattice gauge field, 
cf. sect. 4. Staying momentarily “in the continuum,” the action is 

s = / If% tT(z)(P+ m)+(z). (2.2) 

Formal integration over the fermion fields yields the Boltsmann factor 

ewrcA) = Det(D + m). (2.3) 

The objective is to give a rigorous meaning to the measure ‘D$Z@, and/or to the 
determinant. 

Consider the eigenfunctions and eigenvalues of the Dirac operator b 

ibp, = hvp,. (2.4) 

Since b is anti-Hermitian, the X, are real. The Dirac operator transforms covariantly 
under the gauge group, so the X, are gauge invariant. The Dirac operator anti- 
commutes with -m, i.e. ysb = -Dys. Hence, if v,, is an eigenfunction with eigenvalue 
X,, then 7s~~ is an eigenfunction with eigenvalue -X,. As usual, one imagines that 
the theory is defined on a compact space-time, and the infinite volume limit is taken 
at the end. Then the spectrum of b is discrete. 

The Dirac operator can possess zero modes, X, = 0. In this subspace it is 
convenient to sort the eigenfunctions according to chirality, i.e. the eigenvalue of 
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7s. Let n* be the number of modes with pip, = 0 and -yg,on = fq,, and let 

nu = n+ + n-. The determinant should then be 

Det@ + m) = n(-iA, + m) = mw 
En’ n 

x2 + d), (2.5) 
n n 

except that the infinite product still requires an ultraviolet regulator; this is post- 

poned to sect. 3. (The second equality follows because nonzero eigenvalues come in 
pairs *A,.) 

It is easy to see that the eigenvectors are orthonormal and form a complete set: 

pz cpy(~)P%(z) = Lnt CW 

CcpQz)&(y) = S(z - yp’j, 
n 

(2.7) 

where i, j denote spinor and color indices. These properties of the eigenfunctions 
permit the expansions 

rL(z) = ~%cpnW 

G(2) = &Q:(Z). 
(2.8) 

n 
where the coefficients a, and &, are Grassman numbers. To obtain eq. (2.5) from 
eqs. (2.1) and (2.2) one takes the functional integral over fields given by eqs. (2.8), 
i.e. the fermion measure is defined to be 

z)@D$ := n da,dti,. 
n 

Fujikawa [16] makes a formal argument* to relate the right-hand side of eq. (2.9) to 
n, d@z)d$(z). Since the product over a continuous index is formal, it is logically 
cleaner to assert eq. (2.9) as a definition. 

The Fujikawa measure is analogous to one based on Fourier modes, 

WD12, - n dll(Wd@). 
k 

(2.10) 

The momenta correspond to eigenvalues of 8, and are also discrete (in a box). With 
a coupling to gauge fields, however, the momenta are not gauge invariant. Hence, 
the definition based on eigenfunctions of b is preferable. 

One must check that the formalism reproduces the axial anomaly. Consider 
space-time dependent chiral transformations 

(2.11) 

‘Sect. 5 pursues a similar, yet complementary, line of thought. 
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and T” = -(TO)+ is a generator of a global symmetry group. (For U(1) take T = i.) 
Under such transformations the measure of eq. (2.9) is not invariant, but 

cl:, = 
/ 

$2(P~(Z)eOn(=)T07~90m(Z) 0, =: C,,a,, (2.12) 

and similarly for 6;, with sums on m implied. The rules of Berezin integration imply 

nda, = DetCrjdak. (2.13) 
n n 

The Jacobian determinants are then responsible for the anomaly. Using an eigen- 
function expansion of an(z) one can write C’,,, = expc,, with 

c,, = 
/ 

I%% Ip~(z)Y5z-“9&)~D(z). (2.14) 

Then 
Det C = eTr ’ = exp (/d% A”(r)+)) , (2.15) 

where the anomaly 
A”(z) = ~9!,(4~3”9,(4. (2.16) 

n 
Collecting the anomaly from V$ and ZJ$, as well as terms from the chiral transfor- 
mation of the action, yields the (anomalous) Ward-Takahashi identity 

Qi+)7,am~“ti(~) = tT(z)@“, mlrs+l(~) + 2-4’(z). (2.17) 

3 Regulating the fermions 

The preceding discussion skirts the need to regulate the determinants in the ultra- 
violet. Let us start with a kind of Pauli-Villars regulator. Eq. (2.16) becomes 

A&(z) = c A, (X~IM~)9~(z)r5T09n(2). (3.1) 
n 

Let the index n run over (1 - no, . . ., 0,1,2,. . .} with the convention that rz > 0 
denotes nonzero modes; let us order the nonzero modes by AZ and take n odd (even) 
if A, is negative (positive). The regulating function f*(z) is chosen to look like the 
sketch in fig. 1. The cutoff MN and smearing parameter EN should satisfy 

IANi < MN < IANtli, (3.2) 

EN < (A;+., - X;)IMji, (3.3) 

where N is even (so XN+~ # -AN), and one takes EN --t 0 with MN fixed.* The 
Fermi function 

(3.4) 

‘The notation ignorea accidentally degenerate nonzero modes, but it is clear what to do. 
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changes rapidly from 1 to 0 as Rez passes through 1. Since f<(O) = 1 and fi and 
all its derivatives vanish at ~1, it supports the standard analysis [16] that leads to 

A&=$$ Wuy*Fpyl (3.5) 

in four dimensions, where the two traces are over global and gauge-group indices. 
Details in Appendix A show that all higher dimension terms, e.g. tr(F”+2)/M2n, 
are proportional to Ejj”.~-‘/‘~ as EN + 0. 

To check that the regulator does not spoil the derivation of eq. (2.17), one 
restricts the chiral transformations a(z) to those for which 

J d’z 9~(~)@(z)Z%ip,(z) = 0, (3.6) 

if one of n, m > N. If both n and m > N, then the left-hand side of eq. (3.6) need 
not vanish. The Jacobian matrix C takes a block form, and the regulator decouples 
the block with large eigenvalues. Nevertheless, the transformation function a(z) is 
sufficiently arbitrary to derive the Ward-Takahashi identity. 

The EN --t 0 limit corresponds to keeping the first N modes of b completely and 
eliminating the rest. In a loose analogy with the lattice cutoff, in which the Fourier 
measure of eq. (2.10) is truncated, one can carry out the truncation of the modes 
throughout. Thus, the regulated measure is 

(Z)T@$)~ = fi da,d&,, 
n=,-?l0 

(3.7) 

with eigenvalua ordered as above. The functional integral is now over fields given 

fe t tag - & = 10-j 
1 i\' ; ---e=10-* 

;\ i 
iI j 
j : : t 
i : 
: ,i 
: \i 

0 
: \i c 

0 ; 1 ; x 
GdM4 GJ+,M4 

Figure 1: The shape of the regulator function f<(z), which is designed so that modes 
with eigenvalues Xi > Xk are omitted. 
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(3.6) 
4(z) = 5 %9pf,(+). 

I&=*--no 
The effective Boltsmann factor becomes 

,-rdA) = (2 + m2)’ 
IS=* 
A” >o 

(3.9) 

Similarly, the regulated fermion propagator is 

/ 
(v~v~)N~(z)ih)e-S = 5 9,(z) +,‘+ m9A(y) e-rN(A). (3.10) 

n=,-no 

The finite-mode cutoff has been examined before [15], with emphasis on anomalies, 
Those papers did not notice the disappearance of higher-dimensional terms as the 
Fermi function becomes infinitely sharp, a feature that is especially important in 
the chiral gauge theory, cf. sect. 7. 

In perturbation theory, one must be careful to impose the sharp cutoff with b, 
rather than with loop momenta. For example, the dependence of the regulator on 
b, and hence on A,,, induces additional terms in the gauge current, to maintain 
gauge invariance. 

How should one choose N? One ought to take nonsero modes in pairs: it would 
be silly to take X, and not -X,. One also ought to retain all zero modes, because 
they are the most infrared of all! But from the Atiyah-Singer index theorem [ll] 
the number of zero modes is even (odd) if the topological charge Q is even (odd). 
Thus, N must depend on the gauge field and be even (odd) if Q is even (odd). 

The order of magnitude of N can be specified only vaguely. An examination of 
cutoff effects, Appendices A and B, introduces expansions. For a generic cutoff, one 
would need to maintain A,/M < 1. The absence of non-universal terms with the 
finite-mode cutoff, however, permits a lower cutoff. If, as in the next section, A,, is 
obtained from a lattice gauge field, IAl < C/ a, where C is a gaugegroup dependent 
constant. With the finite-mode cutoff it is thus natural to take MN N a-‘. Indeed, 
on an Ni x NT lattice one expects 

h$,, = 4RN& (3.11) 

fermionic degrees of freedom in the lattice fermion field (per flavor), where R is the 
dimension of the fermion’s gauge-group representation. An obvious choice would be 
to augment the usual number with the zero modes, i.e. N = no + Nl.,. 
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4 Coupling to a lattice gauge field 

To extend the formulation to lattice gauge theory, one must provide an interpolation 
determining a connection A,(z) from the lattice gauge field U,,(z). Ref. [lo] gives a 
prescription adequate for defining traces of products of F,,,, but does not prescribe 
A,,. Other possibilities, based on definitions of the topological (instanton) charge of 
a lattice gauge field [17, 181, do prescribe A, explicitly (19, 201. The latter have two 
crucial properties: 

1. The only singularities in A, are instanton-like. 

2. The interpolation A,, transforms ss a connection under lattice gauge transfor- 
mations. 

Ref. [lo] does prove a useful theorem on the spectrum of the Dirac operator for a 
bounded gauge field. The (manifestly) topological interpolations obey the hypoth- 
esis of the theorem. 

The great insight of ref. [17] was to recognize that the lattice gauge field can be 
used to define a fiber bundle. Then the topological charge is the second Chern num- 
ber of the bundle. Lilscher originally provided expressions for transition functions, 
which encode changes of gauge 

A?) = v&8,, + A~p’)vp* (4.1) 

from a patch c~ of space-time to a neighboring one p. For consistency, ~0, = u;;. 
In the fiber-bundle formalism, the gauge is fixed separately within each patch, such 
that A?’ has no singularities. The winding responsible for topological charge then 
resides in the transition functions [17, 211. The more familiar patch-independent 
connection is 

A, = w,’ (zk% + A$“h44, (4.2) 
where the section woI is related to the transition functions by 

“-0 = w&p’. (4.3) 

The first step of refs. [19, 201 is a patch-wise continuous, bounded interpolation for 
the nonsingular A?). Eq. (4.2) p ro uces a continuous, bounded connection A,, but d 
when the transition functions have nontrivial winding, the sections, and thus A,, 
have directional singularities. By construction, therefore, the only singularities in 
the globally defined A,, are those induced by the instanton-winding of the section. 

The other crucial property of the reconstructed gauge potentials of refs. [19, 201 
is the response to a lattice gauge transformation. The transformation law of the 
lattice gauge field is 

g(l,(4 = s(4~“(4s-‘(s + C), (4.4) 
where s, s + b denote lattice sites. For z in the patch e associated with s, the 
reconstructed section obeys [22, 201 

g%(z) = s(s)%(~)g-‘(z). (4.5) 
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The interpolation g(z) is independent3 of Q, but, of course, g(s) is independent of 
z. The interpolated connection transforms as 

g4 = gk)W, + 4&-‘(z), 

with the same function g(z). 

(4.6) 

If g(s) = gz(s)gl(s) at each site, the three interpolated gauge transformation 
fields obey the composition law 

g(z; V) = g2(Tg’u)gl(2; (I). (4.7) 

Note that the interpolation depends on the underlying lattice gauge field, which is 
emphasized here by the second argument. Consequently, every interpolated g(z; U) 
can be built up from infinitesimal, site-by-site steps. 

and 
For the present discussion the complicated expressions for the interpolated g(z) 
A,, are not illuminating. Interested readers can consult refs. [22, 191 for Liischer’s 

bundle. (For Phillips and Stone’s bundle, analogous results can be obtained [20].) 
Our prescription for coupling fermions to lattice gauge fields is to start with 

the lattice gauge field U,, interpolate to obtain the connection A,, use the asso- 
ciated Dirac operator to define the measure, and regulate the determinant using 
the sharp cutoff. Because the Dirac operator is constructed using fiber bundles, it 
automatically satisfies the Atiyah-Singer index theorem 

R+ - n- = Q, (4.8) 

where Q is the topological charge (as defined by ref. [17]) of the lattice gauge field. 
Moreover, from eq. (4.6) the eigenvalues of the Dirac operator, and hence the effec- 
tive action, are invariant under lattice gauge transformations. From eq. (3.9) the 
Boltzmann factor evrNcU) is also positive and finite. 

5 Relation to lattice fermion fields4 

It is intriguing to contrast the regulated measure of eq. (3.7) with the usual one 

OW’~),., = ~d+(s)d&s), 
s 

(5.1) 

where +/J(S) and q(s) denote the lattice fermion field and its conjugate at site s. 
There is an interpolation of the fermion field analogous to A,,. In particular, under 
a lattice gauge transformation the interpolated fermion field transforms as 

gdJ(z) = g(z)@(z), g4(z) = 4(z)g-1(z), (5.2) 

with the same interpolated g(z) mentioned in sect. 4. 

31f .z E .J n 7, cq. (4.3) requires that the interpolation obey g(z)lo = g(z)], 
‘This section is a diversion, and the rest of the paper m&es no use of it. 
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Let us expand the interpolated field $(z) as in eq. (2.8), use the orthonormality 
to solve for the a, and take differentials. Then 

da, = c 
* J 

d’z p:(z)zd$(s) =: ~m,,d+(s), 
, 

dii, = c ld’z dj(s)$#+,(z) =: Cd&s)%,,. 
, . 

(5.3) 

If the number of modes N equals the number of lattice sites, m and riz are N x N 
matrices and one can write 

nda,d&, = (det-‘m x det-‘A) nd$(s)d&s). 
n 8 

(5.4) 

The determinants here are akin to ones appearing in ref. [16]. Formally, one can 
combine the determinants into a “metric” 

gs, = ril~“m”* = 
J 

& W(z) W(z) -- 
atL(4 W(s) ’ 

and rewrite the measure as 

fidir.do, = detg-’ ndd(s)dG(s). 
n , 

The metric depends covariantly on the gauge field, by construction of the interpw 
lation. 

One can develop a geometric picture by imagining a Grassman line element 

~g,.&@)d+(s) = c dhk. (5.7) 
n 

that is gauge invariant. In this language the customary lattice fields are curvilinear 
coordinates, and the expansion coefficients are rectilinear. According to this picture, 
the usual lattice measure mistakenly neglects the curvature. Note that without the 
gauge interaction, the metric becomes flat: the two bases are then Fourier transforms 
of one another. 

The metric also becomes trivial in the naive continuum limit. Then the interp+ 
lation is unnecessary and a+(z)/a$(s) = 6(z - s). The factor det g-’ is essential, 
however, for obtaining the correct anomaly, index theorem, etc. In particular, the 
anomaly arises because one may remove the regulators only after calculating with 
the functional integral, not (as in the naive continuum limit) before. 

Of course, eq. (5.6) is merely heuristic. To make the manipulations rigorous, the 
interpolated fields must be smooth enough that the Dirac eigenmode expansions 
leading to eq. (5.3) stop at the Nth term. Here N is both the number of modes 
kept and the number of lattice sites. This condition presumably puts constraints 
on the smoothness of the lattice gauge field similar to, but perhaps more stringent 
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than, those imposed by uniqueness considerations in the fiber bundle constructions 

[17,18]. One should emphasize, however, that such constraints are on the connection 
between the present measure and the usual lattice one. They do not detract from 
eq. (2.9) as a definition of the functional integral, or ebrNtLI) as a definition of the 
effective action. 

6 Computational Considerations 

Since the effective action IIN is real and positive, the functional integral over the 
gauge bosons is amenable to the Monte Carlo method with importance sampling. 
The Dirac eigenvalues, and hence the effective action, depend on the lattice gauge 
field U so they must be recomputed for every change of CJ. If the effective action 
is defined with a Gaussian e- A lM’ i [16] or standard Pauli-Villars [lo] regulator, 
one would need to compute all eigenvalues of b and weight them appropriately-an 
infinite computation. With eq. (3.9), however, only the lowest N eigenvalues are 
needed-a finite computati0n.s 

To compute the eigenvalues one can introduce an auxiliary lattice much finer 
than the original one. Parallel transporters for the fine lattice are constructed from 
the interpolated gauge field. Now consider any discretization of the Dirac operator, 
and denote its eigenvalues by d,. The discretization and auxiliary lattice spacing 
must be chosen such that d, = X, (up to tolerable floating-point precision) for 
n 5 N. On a fine enough auxiliary lattice, “any” discretization becomes precise 
enough. To avoid problems sorting the eigenvalues, however, a discretized oper- 
ator without a doubled spectrum is preferable. Suitable examples would be the 
Wilson discretization [3], or one derived by gauging the fixed-point action of a free 
fermion [23]. The discretization may break chiral symmetry, provided the breaking 
is numerically significant only for modes above the cutoff N. 

Similar remarks apply to the construction for chiral gauge theories, sect. 7. 
An important difference is that the Boltzmann factor e-I‘N(‘) can be complex (for 
fermions in “complex” representations), and in any case not positive definite. Monte 
Carlo integration is then much more difficult, because fluctuations in sign reduce 
the effectiveness of importance sampling, cf. sect. 7.4. Nevertheless, e-‘N(‘-‘) can be 
evaluated with finite computation. 

7 Chiral fermions 

7.1 General remarks 

The preceding sections provide a definition of the functional integral for vector-like 
fermions. It is nonperturbative, has the correct axial anomaly, and by construction 
provides a natural association between a Dirac operator and a topological charge, 

‘Conceding round-off error, the “infinite” computatian is c-l times more costly, where L char- 
acterizes mahim precision. 
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so that the index theorem is obeyed. The ideas are now extended to chiral fermions, 
which appear in the Standard Model and in grand unified theories. 

The essential feature of chiral gauge theories is that positive and negative chi- 
rality fermions transform under different representations of the gauge group. In a 
basis of the Dirac matrices with ys diagonal it is useful to split the four-component 
Dirac spinor into two two-component Weyl spinors. Without loss of generality one 
can chargeconjugate the negative chirality part and assemble everything into one 
positive chirality field. This Weyl spinor is henceforth denoted t/r+, and the represen- 
tation of the gauge group under which it transforms is denoted p, with generators ta. 
The kinetic term of the action is 

S = 
J 

d’z $ib+$+. 

As before one wants to define the Boltzmann factor 

(7.1) 

e-r(4 = 
J 

z)~,+z)&-SW+.~~)~ (7.2) 

But b+ maps positive chirality Weyl spinors into negative chirality Weyl spinors. 
The underlying difficulty in constructing a chiral gauge theory is that the right-hand 
side of eq. (7.2) is not a (functional) determinant. 

A well-formulated chiral gauge theory should also exhibit fermion nonconser- 
vation [24]. If the vector-like operator b has zero modes, the right-hand side of 
eq. (7.2) should vanish: Recall that the zero modes have definite chirality. Thus the 
zero modes possess natural projections from Dirac spinors ‘p* onto Weyl spinors 
&. For positive chirality the projection implies b+b+ = 0, and for negative chiral- 
ity 4!b+ = 0 (integration by parts implied). In eq. (7.2) integration over the q%+ 
component of $+ or over the 41 component of $l yields zero. On the other hand, if 
there are n* zero modes of each chirality (counting individual species appropriately) 
the integral 

~(v+,v-) = JD++D$: (~,:)‘-(~+)“+e-S(A,~+.tL:) (7.3) 

does not vanish if V* 1 n*. (The notation ($+) “+ is schematic for a product of n+ 
suitable components or positions of $+.) Amplitudes for fermion nonconservation 
are proportional to integrals like Z(Y+, V-). 

Before discussing how to regulate the integrals in eqs. (7.2) and (7.3), one should 
list the properties of eq. (7.2) that the regulator should respect. In addition to the 
connection between zero modes and fermion nonconservation, one wants 

1. Re r(gA) = Re r(A), under all circumstances. 

2. Im r(gA) = Im r(A), only if p is “anomaly-free.” 

3. Im r(A) # 0, if p is complex;’ indeed Im r@‘(A)) = - Im T(p(A)). 

‘If there is a unitary matrix u rucb that to = UP’U ‘, then p is red, otherwise it is complex. 
The representation generated by t” is denoted P*, If p is real, then e-‘(“’ is red. 
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Here gA,, = g(8, + A,)g-’ is a gauge transform of A,,, and the notation r(p(A)) 
stresses the fermion representation. Condition 2 is imposed so that the nonpertur- 
bative definition reproduces perturbation theory. Condition 3 identifies a diagnostic 
feature of the effective action of chiral fermions. 

Even though the right-hand side of eq. (7.2) is by nature not a determinant, 
ultraviolet regulators almost always turn it into one. For example, in the most 
naive (and unsuccessful) lattice formulation, D+ becomes a large, square, numerical 
matrix, and detD+ is the matrix determinant. So let us provisionally assume 

e-T(A) = jj(-iA=). 

In anticipation of a cutoff analogous to the one for vector-like theories (sect. 3), the 
product runs only over the first N eigenvalues. The most transparent way to realize 
Conditions 1 and 2 is as follows: Write X, = i~?“+‘~“, with I, and 8, real, and note 
that 

Rer(A) = -cl., Im r(A) = - 5 0, mod 2rr. (7.5) 
” n 

If the moduli jX,j = e’n of the eigenvalues are gauge invariant and one orders 
the eigenvalues by I&,[, Condition 1 is satisfied. By Condition 2, in anomalous 
(sub)representations the phases of the eigenvalues would be gauge variant, but the 
variation from one species could cancel that of another. Unfortunately, it seems 
that eigenvalue problems with these simple gauge-transformation properties leave 
the total phase Im r unspecified, flouting Condition 3.’ 

7.2 A specific formulation 

A standard way to cast the effective action as a determinant is to introduce a new 
negative chirality partner $- with no dynamics. The action is now 

S = / d’z (q&b+ti+ + &h&.) = / d4s @A (7.6) 

where the four-component spinor 

*+ *= *- 1 ( ) 4 = ($! lb:> I 

i,:=D++tL= ( ) ;+t 

(7.7) 

‘Ref. 11.4) adopts the spirit of this realization. There F&T is related to the vector-like theory 
and Im r =: v to the spectral iYymmetry of a certain operator (251. This method, however, requires 
three regulators: one for the gauge fields, one for the vector-like fermions, and one for r). 
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The matrix forms of eqs. (7.7) and (7.8) presumes a y-matrix basis with 7s diagonal. 
Formally, the functional integral over D$-D$! is trivial, but the combined integral 

e -I- = / ‘o+q&e-SW&A) 

J 

can be expressed as a determinant, as in the vector-like theory. 
The operator ib is not self&joint, but it is elliptic [26], so on a compact space- 

time it still has a discrete spectrum. The eigenvalue problem now has different right 
and left eigenfunctions. There are zero modes 

i&+,, = 0, (ifi)+ip-,, = 0, (7.10) 

where (P*,” are zero-mode eigenfunctions of the vector-like operator D, with chirality 
ztl. Nonzero modes come in pairs* 

ih” = hrln, 

(ib)+X, = X;,yn 

that are mutually orthonormal: 

J 
~zx!,(~h(z) = &WI. (7.12) 

In addition J d% yrAg~+,~ = Id% ~P’,,v~ = J d’z p!,n’p+,m = 0. Furthermore, 
since -& = -I&, if q” has eigenvalue X,, then ~~7” has eigenvaiue -X,, and 
similarly for xnr -ysxn. 

The functional integral is now defined to be over fields 

G(z) = ~r,~+,.~Z) + -&w”(2), 
n=l n-1 

$(z) = &lp-,.(z) + $&XL(Z)? 
n=l n=t 

(7.13) 

i.e. the measure is 

%v’b!~?b+@b: = v?bVq = fi da,d&, fj dz, fj d&,. 
n=, Ix=* “=I 

(7.14) 

As in sect. 3 the functional integral is cut off by retaining only the lowest N nonzero 
modes. The principle for ordering the eigenvalues is revealed below, but clearly 

‘The eigenvalue problem desnibed here is implicitly adopted by ref. [IO] and many other papen 
[15, 27, 281. Often the literature di sasses models that couple fermions to extemd fields via a+)‘+ 
4%. This operator is again not seIf+.djoint, though elliptic. so there are left and right eigenfunctions 
xn # 0:. Moat papers either ignore this subtlety, or try to circumvent it. For example, some tricks 
turn iD into a Hermitian operator, thus leaving Im r unspecified. They cannot be adopted here. 
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the two modes with the same Xi should be adjacent. Analogously to sect. 3, it is 
convenient to take R odd (even) if Re X, is negative (positive). 

Let us first integrate over the a, and a,. Eqs. (7.13) and (7.14) yield 

,-F.,J(A) = &A.) = fi xi. 
“=I F&An>0 

for the functional integral. In a real representation these eigenvalues come in pairs 
(-iX,,iX;); FN satisfies Condition 3. But one should not expect IN to be 
a suitable definition of the effective action-hence the tilde-because neither the 
moduli nor the phases of the nonzero eigenvalues are gauge invariant. 

Under the gauge transformation g = e ” the chiral Dirac operator transforms as 
gb = eyp-&-wp+, where P* = ;(l f+ys). The zero modes are gauge invariant. To 
first order in w the nonzero eigenvalues vary by 

gx, = xn (I - J ~2 x~wmn(+w) > 
which immediately yields the variation of I’m: 

&J-N = 
J 

d4z A;,(z)w”(z), 

(7.16) 

(7.17) 

where 

A:,(z) = 5 x!,w”Ys%(2) = ,;y, 2 x!,(2)tDYsfcN(-~ZIM~)~n(2). (7.18) 
?I=1 n=t 

The last expression applies if the eigenvalues are ordered by increasing Re Xi, which 
is justified because it reproduces the consistent gauge anomaly. 

From eq. (7.18) and Appendix A, the imaginary part of 6wl=‘~ is 

iImA& = ~E”“‘a~tr,[tQ(A,%A. + ~AAA)], (7.19) 

the familiar consistent anomaly [29, 30, 311. It vanishes if tr,,(t”{t*,t’}) = 0 in 
representation p 1311; l=,~ satisfies Condition 2. 

Even if the anomaly cancels, however, the real part SwF~ is not gauge invariant. 
With o; and (Y& from Appendix A 

c~ ~efiv = &J&z (-M;+) + o:R(+qz). (7.20) 

After taking EN + 0, all higher-dimension terms drop out because they are pro 
portional to e-tjrN. Following Bardeen, the gauge variation of the real part can be 
compensated by counter-terms [29]. Let 

MA Sz = -s 
J 

d% tr,(Al), 
(7.21) 

d% tr, [+A,@A, + (a. A)~ + $A,A,A,A, - +(A*)~] , 
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and Scr = Sa + S.,. If S,, is computed using the interpolated gauge field, its gauge 
variation cancels that of Rel=N exactly .g The choice of S, is not unique, because 
one could also add a gauge invariant term proportional to tr, F*. But the ambiguity 
corresponds to a shift in the (inverse) bare gauge coupling, so it should make no 
difference once all cutoffs are removed. 

The counter-term Sa is supposed to remove a quadratic divergence, but the 
number of modes N-not the mass &fN that appears in eq. (7.2l)-define.s the 
cutoff. The number of fermion modes with momentum below a cutoff M is 

N = 4Rz f.(k*/M’). 
k 

(7.22) 

Approximating the sum by an integral yields N = 4R(LM)‘/32~r*+O(e-*‘~). But 
N is an integer, so the error in this approximation can be eliminated by taking 

(7.23) 

This value of MN is the one needed to cancel the quadratic divergence. If one 
chooses N = Nr.,, then M$ = 4fi7r/a1 z (4.2/a)*. 

The combination 
r,V = FN + SC, (7.24) 

is thus gauge invariant under infinitesimal gauge transformations. By eq. (4.7) this 
is enough to show that P,(u) is invariant under all lattice gauge transformations. 
Hence, PN(u) satisfies all three conditions. This is the main result. 

Finally, let us integrate over the zero modes. Unless there are enough factors of 
the fermion field in the amplitude, the integral vanishes. With the minimal number 
of fields in eq. (7.3) 

Z(n+,n-1 = e-rN(A) g &wn$ ‘Pl+.&nL (7.25) 

where i,, j, and zr,, y,, denote discrete indices and positions of the fields in eq. (7.3). 
Functional integration alone would lead to eq. (7.25) with i;N instead of PN. The 
zero modes present no substantive changes in the computation of the gauge variation 
of FN, so the same counter-terms restore gauge symmetry. 

7.3 Relation to ref. [lo] 

Although ref. [lo] focuses primarily on the vector-like theory with Pauli-Villars 
cutoff, it does prove its important convergence theorem for theories with vector 
and axial-vector couplings. This suggests that the chiral coupling is also intended 
as an application. With the cutoff proposed there, the analysis of cutoff effects 
leads to somewhat different conclusions. Appendix C recasts ‘t Hooft’s cutoff in 

*lu other methods [32, 33. 341 the cancellation ia either approximate or subject to tuning. 
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a way that makes Appendix A directly applicable. One finds that the quadratic 
divergence drops out, but the universal term a& still spoils gauge invariance of 
the real part. Moreover, the coefficients of the higher-dimension terms, crER and so 
forth, no longer vanish, though they are suppressed by powers of M*. To eliminate 
these violations of gauge symmetry, one must take M to infinity, on each gauge 
field separately. This is cumbersome, and perhaps logically inconsistent, because 
to obtain a renormalized theory, the bare gauge coupling must be adjusted to keep 
physical masses-properties of the ensemble average--cutoff independent. 

7.4 How to compute baryon violation 

To summarize the results of this section it is worth sketching how to compute cor- 
relation functions. Because the integrals 2 sometimes vanish trivially, let us denote 
the sector of lattice gauge fields with n+ zero modes U(,+,n-). Nonzero integrals 
with then be over one or so sectors. 

Consider first fermion-conserving observables. One would like to compute a ratio 
of the form 

(0) = / 
Du(o,o) Oe-rN-sg 

/ 
Du(o,o) e-rN-sg 

(7.26) 

where S, is the lattice-gauge-field action. Here the gauge-invariant observable 0 
is constructed from the gauge field and fermion propagators. For eq. (7.26) one 
requires an ensemble of fields in UC,,,~), distributed with weight 

w = e-rNw-s‘w). (7.27) 

For amplitudes of this type, all other sectors carry weight 0, because of the zero 
modes, so in the Monte Carlo they are simply omitted. 

Consider next a fermion-violating amplitude. For simplicity, suppose that 0 
does not contain fermion species that are being created or annihilated. Now one 
would like to compute a ratio of the form 

w?Z)tlj(Y)) = / 
Du(2,0) Olp+(z)~~(y)e-rN(u)-Sr 

/ qo,o) e 
-rN(rr)-sS 

(7.28) 

The numerator and denominator are averages over different sectors.10 and recall 
that in sectors with zero modes e-lm is defined to be the product of the first N 
nonzero eigenvalues, ordered by Re Xi. One can rewrite eq. (7.28) as 

J qz,o) e -rdw-s, 
(Otl’(ZW(Y)) = 

/ 

-r~(u)-s (ovl,(4$+(Y))(&O)~ (7.29) 
‘Dqo,o) e I 

“The twcwzerc-mode sector U~3,0) is typically the sector with topoiogical charge Q = 1, which 
would have one zero mode for each species. 
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where the average (o)(~,~J is over U(Z,~). In addition to the weight W, one must 
compute the zero-mode eigenfunctions q+(z) for created and annihilated species. 

The other factor in the fermion-nonconserving amplitude is the ratio of two 
partition functions. To compute it accurately some special numerical techniques 
[35, 361 are available, which keep track of the system’s preference for one sector or 
the other. Various versions of these “histogram methods” [37] may also prove useful 
in obtaining the nontrivial phase of W, inherent to a complex representation. 

7.5 Global anomalies 

Some theories, the simplest of which is SU(2) with one Weyl doublet, are afflicted 
by a global anomaly [38]. The representations in question are real, and therefore 
esrNcu), as defined by eqs. (7.15) and (7.24), is real and positive. Thus r,v(U) 
is real. 

Let us focus on SU(2). Because rr,(SU(2)) = Z!,, there are nontrivial gauge 
transformations, for which the proof of gauge invariance of rN(u) breaks down.” 
Let w be in the nontrivial class. The variation I’N(~~) - rN(u) is real, but does 
it vanish? Following ref. [39] one can compute the difference by embedding SU(2) 
into SU(3) and taking a trajectory from 9 = 1 to 9 = UJ in SU(3). RerN does not 
change for any infinitesimal step, and since 1lq(SU(3)) = 0, the trajectory can be 
constructed from infinitesimal steps. Thus r&w) - rN(u) = 0 for the embedded 
field, and hence likewise for the SU(2) fields themselves. 

On the other hand, Witten argued that the two configurations U and wU should 
have Boltzmann weights equal in magnitude but opposite in sign [38]. Indeed the 
gauge variation of Im rN integrated along the SU(3) trajectory supports his con- 
clusion [39]. But, given a lattice gauge field U', the algorithm for e-rN(u’) cannot 
determine whether U' = U or U' = "'U. And thanks to the pains taken ensure 
gauge invariance, the computed weight is the same in either case. This is not a 
serious drawback, however. If the global anomaly applies, one can replace numer- 
ator and denominator of eq. (7.26) by Witten’s original result, O/O, eliminating all 
computation. 

8 Conclusions 

The seeming incompatibility of lattice fermions and chiral symmetry has inspired 
the recurring idea [9, 14, lo] of treating the fermions in the continuum, even if 
the underlying gauge field is on the lattice. Smit calls the idea desperate [13]. 
How desperate are the main results presented here? The colorful terminology refers 
to the tacit assumption that a continuum requires an infinite number of degrees 
of freedom (per unit volume). Then the arithmetic needed to evaluate functional 
integrals is infinite: we are desperate because a computer cannot do the job. But 

“Although lattice gauge transformations EM be built up slowly, site-by-site. and eq. (4.7) shows 
that the interpolations inherit this property, the two clanses can be separated by lattice gauge 
transfmnationa for which the interpolation is ill-defined. 
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with a finite-mode cutoff there are N eigenvalues; the computation is finite. AL, 
even in the vector-like theory the effort needed to obtain higher eigenvalues will be 
high (cf. sect. 6). The construction for chiral fermions is yet more computationally 
intensive, because, first, the counter-terms must now be computed accurately, and, 
second, the phase, which stems not from the regulator but from the chiral coupling 
itself, requires extra care. 

There is a potential shortcoming to the finite-mode regulator. One would like 
to verify that the spectrum remains chiral, in perturbation theory and beyond. 
Appendix B demonstrates perturbative universality for fermion loops. (Ref. [IS] 
and Appendix A do the same for anomalous diagrams only.) But there is (as yet) 
no comparable proof for diagrams with external fermion lines, which are needed to 
examine the fermion spectrum. The resolution is not straightforward, because it 
depends on details of the gauge-boson propagator, i.e. on the lattice gauge action. 
And even if the perturbative test is a success, one should be cautious until the 
nonperturbative spectrum has been checked. 

The counter-terms required in the chiral gauge theory may be unsettling at 
first sight. But their necessity arises from the unassailable observation [I] that a 
reguloled functional integral either respects a symmetry or it does not. To obtain the 
anomaly (and hence the physically powerful requirement of anomaly cancellation) 
the functional integral e-rN(u) cannot be gauge symmetric. Consequently, the final 
result for the chiral Boltzmann factor 

,-r,(u) = ,-i,w),-sc,w 
(8.1) 

is the product of a functional integral and a symmetry-restoring factor. 
A related peculiarity is the fate of Witten’s global anomaly [38]. Again, an 

Ansatz for the effective action is either gauge invariant or not. The effective action 
rN(u) is gauge invariant, even when the gauge transformation is in the nontriv- 
ial class. Without asserting that this paper’s formulation succeeds at defining the 
globally anomalous theories, one might suggest that it could shed light on the dy- 
namical puzzles that originally motivated ref. [38]. An optimistic possibility is that 
the dynamics of rN(u) fail in globally anomalous theories, but not otherwise. 

A serious complication is that the formulation is in Euclidean field theory. At the 
nonperturbative level the Wick rotation does no good, and instead one constructs 
the Minkowski theory via the imaginary-time evolution operator on the Hilbert 
space of states. This procedure defines a Hamiltonian that can then be used to 
propagate the states in real time. The eigenfunctions used to define the functional 
integral are fundamentally four-dimensional, so the constructive approach [40] does 
not seem helpful. Perhaps the axiomatic approach [41] will prove more promising. 

Finally, let us compare the present chiral construction with the overlap formal- 
ism [S]. Both define an effective action with a gaugeinvariant real part. Both 
generate an imaginary part in a complex fermion representation, but not in a real 
representation. With the interpolation and fi the gauge variation of the imaginary 
part is the consistent anomaly and with the finite-mode regulator (or in the limit 
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M + m [lo]) nothing else. With the overlap the gauge variation of the imagi- 
nary part contains the anomaly and higher-order gauge breaking terms, analogous 
to a’& (notation of Appendix A), as well. Ref. [6] argues they should be tolerably 
small, and tests in two dimensions [42] indicate that this conclusion may be cor- 
rect. Both methods provide fermion nonconserving amplitudes: here the gauge-field 
topology [17] drives fermion nonconservation, and in ref. [6] the fermion noncon- 
serving amplitudes define the gauge-field topology. (For smooth lattice gauge fields 
the two topologies coincide.) Whereas Appendix B includes an explicit verification 
of fermion-loop coupling-constant renormalization, it does not seem that an explicit 
calculation starting from the lattice overlap is available yet [43]. On the other hand, 
ref. [6] includes several numerical cross checks that have not been done here. An 
important, dynamical test is whether the fermion spectrum remains chiral after in- 
tegrating over gauge fields. l2 Neither construction has been subjected to this test 
yet, because it requires a full-fledged Monte Carlo calculation. 
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A Cutoff effects in the anomaly 

This appendix fills in the steps from eq. (3.1) to eq. (3.5). The modifications needed 
to obtain eq. (7.19) are provided in sect. A.l. The analysis is standard, but it is 
provided to demonstrate the form of higher-dimension terms suppressed by powers 
of l/MN *n. The sharp limit EN -t 0 turns out to be special, because it eliminates 
these terms kforr taking MN --t co. 

First some preliminaries on Fourier transforms. For definiteness the space-time 
is a box with sides L, and volume V = Ld. The Fourier transform 

P(k) = /A e-“-p(z). (A.1) 

Allowed values of k depend on the boundary conditions. This Appendix presents 

“This is Ihe physical crux of recent skepticism [44] of the overlap formalism. 
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details for a wide class of almost periodic boundary conditions,r3 such that k, = 
2rr(v, + q”)/L, v,, E Z. Strictly periodic directions have r),, = 0; anti-periodic 
directions have qU = l/2; C-periodic directions have a certain combination of the 
foregoing and T),, = l/4. The inverse transform (assuming convergence) is 

p(z) = v-1 c p(k)e’“.=. (A.21 
k 

The application needed here is the Fourier transform of eq. (2.7) 

~$5&l)&yq) = V6,,6’~. (A.3) 

Consider any function f obeying /(O) = 1 and f(co) = f’(co) = f”(m) = . . = 0 
[16], and let 

(A.4) 

with the summation convention over the spin-flavor-color multi-indices i, j. In 
sect. (3) the Fermi function f., appears, with mass MN and the limit EN -+ 0. 
For comparison with refs. [lo, 161, however, it is convenient to keep f arbitrary. 

Fourier transforming the eigenfunctions and using eq. (A.3) one obtains 

d;(s) = V-‘(ysP)jiC [~-ik~rf(-~z/~*)eik.2]ij. 
k 

From eq. (2.15) one recalls that here be”.= = eik.l(iti + D). Hence, 

d:(z) = V-‘(dP)ji C [f ((k’ - bz + 2ik. D)/AP)]~~, (A.6) 
k 

Expanding in D/M 

d:(z) = V-‘(rST’)ji C C 9 (bz/Mz + 2ik. D/M): f’“‘(k2), (A.7) 
k n 

where now k, = 2n(v, +Q)/(LM), and f(“) = d”f/dz”. 
Because the functions under consideration are smooth and vanish rapidly at 

infinity, the sums can be approximated by integrals 

& ?‘v k,L . Jf (6 = / $+ (l,k,k,, .)f(k’) +O(e-bLM) (A.8) 

with little error. Odd powers vanish. Note that the finite-size effects also vanish 
when the ultraviolet regulator is removed. 

IsOther boundary conditions such 88 Dirichkt, van Neumann, or fixed lead to the same final 
conclusions. 
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Reorganizing the terms according to the power of M 

d:(z) = 
(-4:)dP 1 Mdf(-dlZ)(0) a;(z) + Md-*f(1-d/2)(0) a;(z) 

+Md-‘f(2-d~2)(0)~~(z)+Md-6f(3-d~2)(0)a~(z)+...], 
(A.91 

where o:(z) = trysTa = 0, 

a; = - tr[yg(b* - D*)], (A.lO) 

0: = 3 tr {-rZ” ((0’ - D*)* + ;[D,,, [D,, b* - D’]] + $[D,, D,][D,, DJ)} 1 
(A.ll) 

and Q: contains terms with 6 D’s, combined to produce a function (rather than a 
differential operator). The resuIt depends on the cutoff function via the coefficients 
f(")(O), defined by f@)(z) z f(z), 

f’“-“(2) = - 
/ 

mdz’f(“)(z’), 
df(") 

f’“+“(z) = dz. (A.12) 
I 

The M independent term has the universal coefficient f (0) = 1; the other coefficients 
differ for different cutoffs. 

With the Fermi function f!-“’ (0) = (-l)“/n!, n > 0, plus terms oforder ~“e-~/*. 
Hence, the oij, 2j < d, are power-law divergences, unless the traces vanish. On the 

other hand, for n > 0 then f!“‘(O) N ~-“e- ‘lc + 0 as E -t 0. Thus, the sharp cutoff 
has no “scaling violations.” 

For the vector-like theory b* - D* = f[7,,, ~Y]F,,Y. If d = 2, the only surviving 
term o; yields the well-known result. If d = 4, the Dirac trace makes Q; vanish 
ss well as everything in (I: except the term (02 - D*)*, yielding the familiar axial 
anomaly, eq. (3.5). 

A.1 Modifications for the chiral gauge theory 

In the chiral gauge theory one wants 

d:(z) = (Yst”)jiC [~![~)f(-~2/M2)~.oI;j 
n 

(A.13) 

The left and right eigenfunctions of & are not complete, but 

qi(Z)x$(Y) = 42 - YP - &I, (A.14) 

where Pn projects onto zero modes. This nuisance is easiest to handle with anti- 
periodic boundary conditions. If the function f drops to zero below the lowest 
momentum mode, then Pof = 0. Thus, the projector can be dropped after Fourier 
transforming. The hole in f cannot affect the momentum sums, so the correct 
approximation in eq. (A.8) uses a function without the hole on the right-hand side. 
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The algebraic manipulations still hold, but one must replace T” by to, b by b 
and the symbol D, by 6, := f{y,,, fi}. From eq. (7.8) 

6, = a,,+ ;A, - fup,,y5Au. (A.15) 

Then 

b* - L?” = $+A - ;u&A, + f(d - 2)(A* - io,,A,A,). (A.16) 

Consequently, 

a; = 
1 

E,,,, tr(tD8pAy) - tr(t’a.A) (d = 2) 
-2 tr(t”8.A) Cd = 4), 

(A.17) 

where the trace is now only over gauge indices. In d = 2 this is the universal 
anomaly, plus a term that can be compensated by a local counter-term; in d = 4 it 
only the latter survives, and it is a power-law divergence. The function in 0; is too 
lengthy to present explicitly, but after the trace (Y: = a& + a;,, where 

2 4, = 3~lrvpo tr [taa,(~,a,A, + LA A A )] * u P 0 (d = 4) (A.18) 

is the well-known consistent anomaly [29, 39, 311, and 

a& = 8 tr[t’ ( * . 8 8 A+ [ LiZA,, A,] - 2[4,8,A, A,,] + {a.A, A*) 

- A,PA)A, - [&Au, [A,, Au]] + .$#A + &AJAu)] (A.1g) 

is the almost as well-known quantity that, like o:]&a, can be compensated by local 
counter-terms [29, 27, 151. 

B Cutoff effects in the effective action 

The analysis of the previous section can be applied directly to the effective action. 
It shows that the finite-mode cutoff is in the same (perturbative) universality class 
as Pauli-Villars regulators. As in Appendix A, the analysis is performed for an 
arbitrary smooth function, but once again the sharp limit is special, because it has 
no power corrections. 

For a good infrared behavior, this section considers only anti-periodic boundary 
conditions. 

One can write the regulated effective action as 

where the effective Lagrangian 

CN = -fCIP~(z)L~‘,(-b*/M~)~,(z), 
n 
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and, for any function f obeying f (0) = 1 and f (co) = f’(m) = f”(m) = . . = 0, 

L!(Z) = lo& + P2)f(Z), P.3) 

and p = m/M. The notation applies to the vector-like theory, but the substitu- 
tions needed for the chiral gauge theory are obvious. The effective Lagrangian for 
arbitrary f will be denoted /Zf. 

Fourier transforming the eigenfunctions, using eq. (A.3), and using be’k’z = 
eik’=($ + D) one obtains 

Lf(z) = -+6jiV-’ C [L, ((k* - b* + 2ik. D)/M2)lij, 
k 

U3.4) 

where k, = n(2v, + 1)/L. Expanding in D/M 

Lf(z) = -$6jiv-l cc q (b*/M’ + 2ik. D/M); Ly)(kz), 
k ” 

P.5) 

where k, = “(2~~ + l)/(LM). The derivatives take the form 

n--l n! (-q-l- f’+) 
mz) = g r? (n - I) (Z + j$y + log(z + p2)f’“‘(z). W) 

The I= 0 term can be called universal, because after summing over k the universal 
f (0) = 1 remains. 

In the vector-like theory, the fermion mass (presumed nonzero) regulates the 
infrared and one can use eq. (A.8). In the chiral gauge theory (or any massless 
case), infrared singularities make the integrals poor estimates of the sums. For the 
present purposes, however, the function f can also be used as an infrared regulator. 
One simply chooses f to drop to zero for momentum less than the smallest allowed 
by the anti-periodic boundary condition, say for ka < 6* = (r/2LM)*. 

The delicate infrared behavior has consequences when reorganizing the effective 
Lagrangian according to the dimension of the interactions. One finds 

q= -l 2(-k+* [ MdL$-d’*)(6*) 20(z) + Md-*Lyd’*)(6*) 1*(z) 

+Md-4L~-d’2)(62) l,(z) + Md-6Ly-d’2)(62) /e(z) f.. .] + A& 
(B.7) 

where IO(Z) = tr 1 = 4R yields a constant of no dynamical significance, 

12 = - tr(b* - D’), (B.8) 

11 = 4 tr { (b* - D*)* + f[D”, [D,, b* - D*]] + i[D,, D,][D,, Du]} , P.9) 

and Is contains same combination of 6 D’s as Q;, which is a function rather than 
a differential operator. The interactions in AL: are proportional to [J2/(J2 + ps)]‘; 
hence they survive only when /1* g 6*. 
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The effective Lagrangian depends on the cutoff via the coefficients Ly’(@. If 

b2 <( p2 (i.e. mL > 1) these become L$“‘( ) 0 . For example, with the Fermi function 

Lp(0) = 1, q’(o) = -l/4, (B.lO) 

plus terms of order ~i”le-‘/~. The higher-dimension functions have coefficients 
L:“)(P)/W” n > 0. From eq. (B.6) one sees that they consist of a universal, f- 
and M-indepandent term, plus terms non-universal proportional to f(“l(0)/MZm. 
The remaining dimensions are balanced by infrared scales m or l/L. Again, for 
the Fermi function the non-universal terms are suppressed by e-‘/C and drop out in 
the sharp limit. Since interactions of all dimension appear in eq. (B.7), it must be 
interpreted as a perturbative series. 

In the vector-like theory, regulated as in sect. 3, 1s vanishes. Indeed, the gauge 
invariance of the regulated theory forbids any dimension 2 terms. In 11 the Dirac 
trace eliminates the nested commutator leaving, for d = 4, 

Cf.4 = WP2, 6 tr p 
48~2 ’ ’ 

(B.ll) 

which renormahzes the gauge coupling. 
In the chiral gauge theory of sect. 7 this analysis applies to f,. The dimension- 

two term 1s does not vanish, because now the regulator breaks the gauge symmetry. 
In four dimensions one has 

Cf.2 = 
M2 (1, mL,- (62)tr,A2. (B.12) 

To restore gauge symmetry, one must add the counter-term S2 in eq. (7.21). On the 
other hand, 14 induces coupling constant renormalization. (The gauge non-invariant 
pieces cancel.) With some patience one can accumulate the nonvanishing r-matrix 
traces in la to obtain 

Cl,4 = - ‘d2tr l$2 
96a2 ’ ’ 

up to a total derivative. Notice that, as expected, the renormalization term is 
half that of the vector-like theory. The dimension-four interactions in AL, present 
because p2 = 0, include gauge-breaking terms; they are cancelled by S,. 

C Applying Appendices A and B to ref. [lo] 

Ref. [lo] defines the fermion functional integral with a time-honored [45] Pauli- 
Villars regulator: 

e-rPv(A) = n (de@ + M;))” (C.1) 
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in the vector-like case, and similarly eSr with B in the chiral case. The determi- 
nants are products over the infinitely numerous eigenvalues. The masse&’ Mi and 
signatures ei satisfy 

gei = f-pbhw = 0, n = 172,3,... 

~ei(M.lM)“l~g(~i/M)=O, n=O,lt2,3,... (C.3) 

For n = 0, eq. (C.3) defines the overall scale M. Eqs. (C.2) and (C.3) require infinite 
series only if one requires the identities for all R. 

The function needed to describe the effective Lagrangian, cf. eqs. (B.l)-(B.7), is 

LpV(Z) = 2 ei lOg(Z + M,2/M2). 
i=o 

(C.4) 

Note that Lpv and all its derivatives vanish at infinity, by virtue of eqs. (C.2) 
and (C.3), so the manipulations of Appendix B still hold. Eqs. (2.17) and (7.17) 
also hold as before, but with A, replaced by Al,, . Here 

fPV(Z) = &,(4 = -g ,y$?. (C.5) 

Again fpv and all its derivatives vanish at infinity, so the manipulations of Ap- 
pendix A hold. 

To apply eq. (A.9) one notes the universal normalization fpv(0) = 1. Power-law 
divergences drop out, but “scaling violations” remain (n > 0): 

fLin'(0) = 0, fpJ(O) = (-fin+' ~C?i(M/Mi)2" # 0, (C.6) 
kl 

and analogously for Lp$(O). One might remark that the absence of power-law 
divergences relies on integrating z to infinity. They w-appear if one truncates Fpv 
when, say, Lpv(z) becomes small. 
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